

Novel platinum/carbon catalysts with cluster size control for hydrogen fuel cells

Eric N. Coker,* Ion C. Abraham

Sandia National Laboratories
Advanced Materials Laboratory
Albuquerque
New Mexico

* encoker@sandia.gov

Outline

- Introduction
 - Project overview
 - Cluster chemistry
 - Catalysts and supports
- Experimental
 - Novel catalyst preparation
- Results
 - Metal cluster size
 - Electrochemical properties
- Summary

Project Overview

At present, ca. 25 g Pt per 50 kW PEM fuel cell (electrode: 0.32 mg cm^{-2}). Pt $\sim \$22 \text{ g}^{-1}$

Aims of project:

- Reduce Pt requirement
- Ideally replace Pt with cheaper, more abundant metal

Approach:

- Cluster chemistry via Mass Spectrometry H₂ vs. CO adsorption rates
- Chemical synthesis of optimal clusters

Cluster Chemistry

H₂ adsorption onto Fe clusters

- Large differences in H₂ adsorption rate as function of cluster size
- Adsorption rate of CO onto TMs varies by factor of only 2-3

Riley and Parks, *NATO ASI Ser. B.* **158**, 727, (1987)

Cluster Chemistry

Laser Ablation FT Mass Spectrometry: adsorption of H₂ and CO by clusters of known size

Vakhtin and Sugawara, Chem. Phys. Lett. 299, 553, (1999)

Catalysts and Supports

Typical catalyst

10 – 20wt.-% Pt or Pt/Ru on carbonIssues: control of crystallite/cluster size loss of surface area through sinteringCarbon required for electron conduction

Novel model catalysts

Pt-zeolite/carbon composite

- Crystallite size control ion exchange level thermal treatment
- Reduced sintering constraints of cavity & carbon matrix

Pt-zeolite Preparation

Zeolite X (FAU)

1.3 nm cavity

0.74 nm window

Si/A11.2 - 2.0

High ion exchange capacity

NaX powder (Aldrich 13X); Si/Al = 1.8; 630 m²g⁻¹

Ion exchange 1-3x with 0.025M $Pt(NH_3)_4(NO_3)_2$ @ 80°C

 \rightarrow 10 – 20wt.-% Pt (25 – 50% capacity)

Catalyst Preparation

- $\bullet = Pt^0$
- = carbon matrix

20wt.-% PtX, heated to 400°C in air

5°C min⁻¹

< 1 °C min⁻¹

20wt.-% PtX/Carbon composites

i) FFA/120°C; ii) N₂/600°C

i) 400°C; ii) FFA/120°C; iii) N₂/600°C

Summary

Pt-exchanged zeolites/carbon

- Model system for cluster control ion exchange level carbon loading heat treatment
- Narrow cluster size dispersions obtained at sizes across range 0.8 to 3.2 nm (*ca.* 12 to 300 atoms)
- Pt is electrochemically active in zeolite/carbon composite
- Zeolite may be removed by acid treatment